

Electro-Sensors, Inc. Ratemeter/Tachometer • TR400-C

Sensor Installation:

The explosionproof sensor is supplied with a slotted mounting bracket. Sensors should be installed so the center line of the magnets pass in front of the center line of the sensor as the disc or wrap rotates. When using the pulser disc, the center line of the magnetized area of the disc, shown as Dimension B, in figure 1, is 1-3/4 inches from the center hole of the disc. The gap distance between the sensor and the disc or wrap, Dimension A in the diagrams, is 3/8 inch $\pm 1/8$ inch. To achieve the proper gap distance, adjust the position of the explosionproof sensor, using the slots on the mounting bracket.

Explosionproof Sensor and Disc (Figure 1)

Explosionproof Sensor and Wrap (Figure 2)

Wiring:

AC Power Supply: Line TB1-1, Neutral TB1-2

The TR400-C Standard uses 115 Vac 6 VA at 60/50 Hz with 230 Vac available as an option. External fusing must be provided by the customer. The recommended fuse is 1/16 amp slow-blow.

Relay Outputs:

Output 1-TB3 and Output 2–TB3 the TR400-C offers 2 Form C Relays. These relays are rated 250 Vac 5 A, and 30 Vdc 5 A resistive load.

Programming the Relay Outputs:

Relay Output Functions:

Each relay output has a set point value (Variables 07 and 10). This value is compared to the displayed value on the front panel and any action required is performed on the outputs.

Underspeed: De-energizes the output when the displayed value is below the set point value.

Relay Programming Variables:

3.	Output 1	Output 2
Set Point Value	Variable 07	Variable 10

Output Value: Enter the value at which the set point will deenergize. There is a 1% hysteresis for the value at which the output will re-energize (i.e. Underspeed Set Point at 100 rpm output will reset at 101 rpm, if On Time has expired).

Variable 02-PPR: Enter the pulses per revolution of the sensor on the monitored shaft. *Note: Electro-Sensors Model 907 Sensor with a Model 255 Disc will provide 8 PPR.*

Sensor Connections:

Sensor Input Configuration Switches:

Input	Channel A TB2-7
Input Type	NPN
Switches O	<u>n</u> 5
Switches 0	ff 4, 6

Terminal	Description	ESI 907	ESI 907
			Old
TB2-6	Supply	Brown	Red
TB2-7	Signal A	Black	Black
TB2-5	Common	Blue &	White &
		Shield	Shield

A Signal Input: TB2-7 A Signal Input:

These inputs require a frequency input relative to speed. Devices such as Hall-Effect Sensors, encoders or magnetic pickups can all be used. Power for sensors is provided across TB2-6 (+12 Vdc) and TB2-5 (common). The maximum power draw available is 100 mA at an unregulated 12 Vdc. Wiring to these inputs should be shielded cable with the shield tied to TB2-5 only. Never use shielded cable with extra conductors. Extra conductors act as antennas picking up electrical noise. This is one of the most common reasons for electrical noise on the frequency input signals. The default switch selection settings comply with Electro-Sensors Inc. sensors.

Diagnostics:

The relays may be tested by pressing the "." decimal place button and holding it for 4 seconds. The relays will turn off as long as the button is held. Releasing the button will reinitialize the relays and include the start delay (Variable 6).

Entering Variables into the TR400-C:

To change a variable press the "VAR" key. The "PROG" LED will light, and the display will read "Pr" followed by the presently selected variable number. Press the " \blacktriangle or \blacktriangledown " keys to change the value of the 1s location to the desired variable number. Then use the " \blacktriangleleft " key to move to the 10s position and change the value to the desired variable number. Press the "ENTER" key and the selected variables value will be displayed, and the 1s location will flash in the display window. Press the " \bigstar or \blacktriangledown " keys to change the value of the 1s location. Use the " \bigstar " keys to move to the 10s, 100s, or 1000s position (the selected position will flash) and then use the " \bigstar or \blacktriangledown " keys to change the value. Press the "ENTER" key to enter the new value. Pressing the "VAR" key without pressing "ENTER" will keep the old value and return the tachometer to the display mode.

Specifications:

Input Power	115 Vac, 6 VA, 1/16 amp External Fuse Recommended, 230 Vac Input Power Optional
Sensor Input	Switch Selectable
NPN Open Collector	2200 Ohm Pull Up to 12 Vdc, 2.5 Volt Trigger Level
Maximum Frequency	4000 Hz 4K Hz – 10 KHz Available Upon Request
Minimum Frequency	.01 Hz
Sensor Supply	12 Vdc Unregulated, 100 mA Max.
Operational:	
A	010(

Accuracy	.01%
Response Time	Minimum .02 Seconds
Set Point Presets	2 Programmable as underspeed
Display Update Time	0.5 Second Update Time

Mechanical:

Enclosure	ABS Plastic 94V-0
Keypad	Polycarbonate Tactile Switch Pad,
	Chemical Resistant, Splash Proof
Display	4 digit .3 Inch Height, Seven Segment
	Displays, 5 Status LEDs
Operating Temperature	0°C to +50° C (+32° to +122° F)
Humidity	0% to 90% Non-Condensing

Specifications Subject to Change Without Notice.

TR400-C Dimensional Drawings: Dimensions in Inches

Panel Cutout:

Remove mounting brackets. Slide the controller into the cutout. Replace the mounting bracket and replace the screws. Do not over-tighten.

TR400-C Variable List:					
	Variable Number	Variable Name	Default	Units	Factory Set Values
_	00	SECURITY MATCH CODE	400	any whole number	0400
8	01	MAX RPM	0200	RPM	0200
odun	02	PPR	8	PPR	A/R
al D	03	DISPLAY UNITS	0200	User Defined	0200
ener	04	Rate Function	0000	Coded	0000
Ō	05	Keypad Lockout	0011	Coded	0011
	06	Start Delay Time	002.0	Seconds	002.0
	07	Output 1 Value	0150	Display Units	<u> </u>
sti	08	Output 1 Delay Time	000.0	Seconds	, <u> </u>
Dutp	09	Output 1 On Time	002.0	Seconds	002.0
ial C	10	Output 2 Value	0100	Display Units	A/R
ptio	11	Output 2 Delay Time	000.0	Seconds	000.0
Ö	12	Output 2 On Time	002.0	Seconds	002.0
	13	Output Function Selection	0011	Coded	0011
Opt Inputs	14	Input Function Selection	0000	Coded	0000
Ħ	15	Display Value at 4 mA	0	Display Units	0000
Opt. inalog (16	Display Value at 20 mA	0200	Display Units	0200
	17	Range Selection	0200	X to 1	0200
	18	Display Update Interval	0.5	0.5 to 10.00 Seconds	000.5
	19	Analog Ramp Time	0.0	0.0 to 10.00 Seconds	000.0

